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Abstract—For Underwater Vehicle Manipulator Systems
(UVMS), the ability to keep a fixed end effector pose is required
for intervention tasks. Maintaining a static configuration in a
dynamic underwater environments requires significant amounts
of energy over time, limiting the operational time for battery
powered systems. In this work we consider learning the periodic
components of the dynamic flow in order to generate periodic
trajectories which keep the end effector fixed, yet minimise the
energy expenditure over time. We compare this proposed ‘go with
the flow’ approach to the static configuration case for a fixed end
effector pose, and show a significant reduction in energy use.

I. INTRODUCTION

For an underwater vehicle manipulator system (UVMS),
effective operation relies on the ability to maintain a desired
end effector pose. These systems contain more Degrees Of
Freedom (DOF) than the dimension of the end effector task
space, a situation defined as kinematic redundancy. Numerical
methods are typically required to solve inverse kinematics
problems for these systems [1], yet the additional DOF enable
flexibility in choosing between any number of configurations
which achieve a given pose [2]. The use of kinematic re-
dundancy to achieve inverse kinematic solutions which have
additional desirable properties has been explored in many
contexts [3], [4].

The problem of choosing from the infinite set of configu-
rations which achieve a given end effector pose is known as
redundancy resolution. Local redundancy resolution methods
are generally solved using least squares [5], [6] or quadratic
programming methods [7], yet may lead to numerical insta-
bilities and sub-optimal trajectories [8]. Global approaches to
redundancy resolution consider longer term trajectories, and
initial work used Pontryagin’s maximum principal to derive
2-point boundary value problems [9]. Due to computation
difficulties, especially when considering inequality constraints,
these methods have been restricted to use in systems with
low degrees of redundancy. Recent methods have looked
at Model Predictive Control (MPC) for solving redundancy
resolution over finite horizons [10], [11]. These methods effi-
ciently handle inequality constraints and are applicable to real-
time implementation, yet strict inverse kinematics constraints
remain difficult to incorporate.

In underwater environments, disturbances due to the flow
of the surrounding water requires active effort from vehicle
actuators to counteract [12]. Small to medium sized UVMS
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Fig. 1. UVMS used in experiments with a 6 DOF Bluerov vehicle and 4 DOF
Blueprint Lab Reach manipulator, showing vehicle pose η and end effector
pose x relative to the world frame {W}. Manipulator joints are labelled q1
to q4

and fully autonomous underwater vehicles are generally bat-
tery powered, and hence energy use over time is of key con-
sideration [13]. The flow usually contains significant periodic
components in shallow waters, and it has been shown in
previous work [14] that the details of these periodic distur-
bances, namely the amplitude, frequency and phase, can be
learned. Generally the vehicle has a larger effective area and
is affected to a greater extent by the surrounding flow than
the manipulator. Therefore keeping the end effector fixed by
maintaining a static vehicle pose requires a large amount of
energy over time.

Several methods have been proposed for control of underwa-
ter vehicles which consider periodic disturbances. MPC with
incorporated knowledge of wave disturbances has been used
to minimise tracking errors for an underwater vehicle [15] and
for UVMS to reduce end effector pose errors due to distur-
bances [16]. Results show improved performance compared
to feedback control methods. Iterative Learning Control (ILC)
has been developed as a method which explicitly considers
periodic control problems, as well as periodic disturbances,
and has seen applications on kinematically redundant manip-
ulators [17].

This paper considers how the kinematic redundancy of the
system and knowledge of the flow can be exploited to find
trajectories which maintain a fixed end effector pose, while
leading to a large reduction in the energy required over time.
This involves generating periodic motions which reduce the
relative velocity of the vehicle and flow at each timestep,
while considering other dynamical effects. Thus the method



is referred to informally as ‘going with the flow’.
Due to the predictive time horizon method of the approach,

it has similarities to MPC style trajectory generation methods,
yet few existing approaches consider redundancy resolution
over a disturbance period.

This paper makes the following contributions:
• Formulation of a method for online learning of flow

velocity components using using adaptive oscillators
• Development of an optimisation based approach for gen-

erating energy minimising trajectories
• Simulated results showing significant reduction in energy

use over time compared to the static configuration case,
while keeping the end effector pose fixed

• An example of how an energy minimising trajectory can
reduce the end effector pose error when affected by large
disturbances

• Analysis of the sensitivity of the proposed method to
dynamic modelling errors, showing robustness up to
significant amounts of added parameter noise

The remainder of the paper is structured as follows. Sec-
tion II describes the existing kinematic and dynamic models
used to describe UVMS, and how details of the periodic
disturbances can be learned online. Section III gives a def-
inition of redundancy parameterisation, and introduces dif-
ferential kinematics for parameterised systems. Some simple
implementation examples for the proposed method are given.
Section IV details the formulation of the energy minimising
trajectory as a linearly constrained non-linear optimisation
problem. Results of the method are presented in Section V,
and finally concluding remarks and future work in Section VI.

II. MODELLING OF UVMS

A. Kinematic Modelling

A vehicle manipulator system has system configuration θ =
(η, q)T , with dim(θ) = n, where η ∈ SE(3) is the vehicle
pose in the world frame, and q ∈ Rn−6 is the manipulator joint
angles. Given some end effector pose x where dim(x) = m,
in the world frame, the forward non-linear map f gives

x = f(θ) (1)

In this paper we consider x ∈ SE(3) with m = 6. Figure 1
shows the coordinate frames for the system considered in
this work. Differentiating the above relationship gives the
differential kinematics relationship

ẋ = Jθ̇ (2)

where J ∈ Rm×n, and θ̇ ∈ Rn describes the system velocities
in the vehicle frame, and ẋ ∈ Rm is the end effector velocities
in the world frame. Note that this work considers fully actuated
holonomic systems.

B. Dynamic Modelling

The dynamics of the system are given by [18]

M(θ)θ̈ + C(θ, θ̇)θ̇ +D(θ, θ̇, v̇v)(θ̇ − vv) + g(θ) = Bu (3)

where M(θ) is the configuration dependent mass matrix,
C(θ, θ̇) is the vector of Coriolis forces, g(θ) is the vector of
gravity (and bouyancy) forces, u is the effort of each actuator,
and B is a mapping from u to the force/torque of each DOF.
Finally D(θ, θ̇, vd) is the vector of damping terms, which can
be expanded as

D(θ, θ̇, vv) = DL(θ) +DQ(θ, |θ̇ − vv|) (4)

where DL and DQ are diagonal matrices of linear and
quadratic drag terms. Finally vv = JR(θ)vd, where vv is the
velocity of the surrounding flow relative to the world frame
given in the vehicle frame, vd is the flow given in the world
frame, and JR(θ) is the transformation from the world frame to
the vehicle frame. Therefore (θ̇−vv) is the relative velocity of
the vehicle and the surrounding fluid, expressed in the vehicle
frame.

Expansion of other terms in Equation 3 gives

M(θ) = Mi(θ) +Ma(θ) (5)

C(θ, θ̇) = Ci(θ, θ̇) + Ca(θ, θ̇) (6)

In Equations 5 and 6, Mi, Ma, Ci and Ca are the inertial and
added mass matrices, and inertial and added Coriolis matrices
respectively.

C. Estimating Hydrodynamic Parameters

Inertial and hydrostatic parameters such as mass, moment
of inertia and buoyancy are relatively easy to determine
either from static measurements or 3D models. Hydrodynamic
parameters are harder to estimate, and have to be determined
experimentally. This section details how these parameters can
be estimated in a zero flow environment. Accurate knowledge
of hydrodynamic parameters is required for estimation of the
periodic flow characteristics. Standard linear regression models
can be used for hydrodynamic parameter estimation for un-
derwater vehicles [19]. This method uses a linear observation
model

Hπ = y (7)

where H is the regressor matrix, π is the vector of pa-
rameters to be estimated, and y is the observation vector.
Assuming simplifications due to symmetry and low relative
velocities [18], each unknown in π contains 6 terms, for a
total of 18 unknowns for each rigid body. Now Equation 7
can be solved as a linear least squares problem with linear
constraints to enforce positive drag and added mass terms.

min
π

||y −Hπ||2 , π ≥ 0 (8)

D. Online Learning of Periodic Flows

Assuming good prior estimates of all dynamic parameters
from above, the observed dynamic response of the system
can be used to learn the period, phase and amplitude of the
disturbance signal. This is run online since the flow parameters
are not static over time. Adaptive Frequency Oscillators (AFO)
are commonly used to learn periodic signals [20], and have



seen applications in several robotics applications [21], [14]. In
this paper the estimated periodic flow velocity is modelled by

v̂d =

K∑
i=1

α̂isin(ω̂it+ ϕ̂i) (9)

where α̂i, ω̂i and ϕ̂i are the amplitude, frequency and phase
respectively of the ith frequency component, and K is the
total number of frequency components in the learned signal
v̂d. Using the dispersion relation for the wave frequencies and
water depths considered in this work, the wavelength is found
to be on the order of 50 metres. This wavelength is around
2 orders of magnitude larger than the motion trajectory of
the vehicle and position dependence of the wave velocity can
therefore be ignored. The following adaptive integrators are
used based on [20]

˙̂ωi(t) = νF (t)cos(ϕ̂i(t)) (10)

˙̂
ϕi(t) = ω̂i(t) + νF (t)cos(ϕ̂i(t)) (11)

˙̂αi(t) = ηF (t)sin(ϕ̂i(t)) (12)

where F is the driving signal. In this work there is not a direct
signal to be learned, but rather the flow velocity has to be
estimated from observing the dynamics of the system. Using
the observed difference in acceleration as F = J−1

r M(θ̈− ˆ̈
θ)

where
Mθ̈ = Bu− Cθ̇ −D(θ̇ − vv)− gk (13)

M
ˆ̈
θ = Bu− Cθ̇ − D̂(θ̇ − v̂v)− gk (14)

which simplifies to

M(θ̈ − ˆ̈
θ) = D(vv − θ̇)− D̂(v̂v − θ̇) (15)

Note v̂v = Jrv̂d, which is the estimated flow velocity in the
vehicle frame, and J−1

r is the transform from the the vehicle
frame to the world frame in which the flow is estimated.

III. REDUNDANCY PARAMETERISATION

A. Definition

Kinematic redundancy occurs when n > m, which gives
θr ⊂ θ, where dim(θr) = (n − m), which is the space of
configurations which satisfy Equation 1 for a given x. We
therefore have an infinite number of solutions to Equation 1,
which can be exploited to find configurations which optimise
some secondary objective. Null space projection methods [5]
have been proposed for redundancy resolution. This involves
projecting the gradient of a secondary objective onto the set
of null velocities of the system. The projection matrix is given
by (In − J+J), where J+ is the pseudo-inverse of J . This
projective gradient descent method does not effectively search
the available space of redundant configurations [22]. Redun-
dancy parameterisation methods have been proposed [22],
[23], which explicitly consider the (n − m) dimensional
space of redundant configurations. This allows for significant
dimension reduction in the secondary objective optimisation

problem. Previous work by the authors [24] has looked at
redundancy parameterisation for an UVMS.

Given an appropriate parameterisation, the vector of veloc-
ities of the redundant DOF is given by θ̇r ∈ Rn−m. For a
fixed end effector pose, the relationship between the θ̇r and θ̇
is given by

θ̇ = Ar(θ)θ̇r , ẋ = 0 (16)

where Ar(θ) ∈ Rn×(n−m) is the redundant Jacobian which
contains a linearly independent set of basis vectors spanning
the null space, with definition

JAr(θ)θ̇r = 0 (17)

The general inverse differential kinematics can be written as

θ̇ = J+ẋ+Ar(θ)θ̇r (18)

where J+ is the pseudoinverse of J .

The primary advantage of redundancy parameterisation is
a significant dimension reduction when optimising over the
space of kinematic redundancy. This is essential for large
optimisation problems such as presented in Section IV. The
inverse kinematics is also explicitly satisfied in the redundancy
parameterisation framework, removing the need for a non-
linear equality constraint when searching through configura-
tions.

IV. ENERGY MINIMISING TRAJECTORY

A. Trajectory Optimisation

We assume we have a learned disturbance signal with period
T , and velocity vector vv(t) in the vehicle frame. Section II-D
details the online disturbance learning method.

The aim is to minimise the total energy used over each
disturbance period, while keeping the end effector fixed at
a desired pose. The actuator effort u can be found from
Equation 3 as

u = B+(Mθ̈ + Cθ̇ +D(θ̇ − vv) + g) (19)

The power used by each thruster is proportional to |u|3/2 [25].
The power used by the manipulator is ignored since in the
unloaded state the total power draw is around 5 watts, while
the 8 vehicle thrusters draw around 50 watts each. This
significantly reduces the complexity of the optimisation since
only the rigid body dynamics of the vehicle body have to be
computed over a trajectory. Since the manipulator only has
4 DOF, it is unable to fully compensate for vehicle motion
even for small disturbances, and therefore trajectories which
only require manipulator effort are not possible. Given the
thruster power relationship, the problem is formulated as a
L1.5 minimisation over the trajectory given by

min
˙θ(t)

∫ T

t=0

|u(t)|TΛ|u(t)|0.5dt (20)

with diagonal weighting Λ, where |u(t)| is the element-wise
absolute value of u(t) and |u(t)|0.5 is the element-wise square-
root of the absolute values. In this work all thrusters are



homogeneous and therefore all corresponding terms in Λ are
set to 1. The trajectory starts from initial configuration θ(0),
and θ(t) = θ(0)+

∫ t

0
˙θ(t)dt, where the addition and integration

is according to the associated Lie algebra. There is also a
constraint ∫ T

t=0

˙θ(t) = 0 (21)

in order to generate a closed periodic trajectory.
In order to make the problem tractable, the trajectory is

discretised into a set of k successive system configurations
θ1, ...θk, written as stacked vector θ, with corresponding
redundant configurations θr,1, ...θr,k written as θr. Each point
along the trajectory of total time T is equally separated by
∆t = T/k. Dynamic quantities are computed using the finite
difference operator

Di =
1

∆t


−1 1

−1 1
. . . . . .

−1 1
1 −1

⊗ Ii×i (22)

where ⊗ represents the Kronecker product, and the last row
accounts for the wrapping periodic trajectory. Now we can
rewrite Equation 16 using

θ̇ = Ar θ̇r = ArDn−mθr (23)

θ̈ = Dn(ArDn−mθr) (24)

giving the actuator effort at each timestep i

ui = B+(M θ̈i + Cθ̇i +D(θ̇i − vv) + g) (25)

and rewriting the discretised objective to be minimised

V = min
θr

k∑
i=1

|ui|TΛ|ui|0.5 (26)

with constraints

θrmin ≤ θr ≤ θrmax (27)

θ̇rmin ≤ D(n−m)θr ≤ θ̇rmax (28)

which are all linear constraints. Using Matlab’s interior point
method in fmincon, with supplied objective gradients, a 20
point trajectory with 4 redundant DOF takes around 3 seconds
to solve. This is less than the period of the trajectory, making
the method amenable to real-time implementation.

B. Trajectory Tracking

To maintain the desired end effector pose xd, and track the
desired redundant configuration θr,d at the current timestep,
the following differential kinematics method based on Equa-
tion 18 is used

θ̇d = β1J
+(xd − xc) + β2Ar(θr,d − θr,c) (29)

where θ̇d is the desired system velocities tracked by low level
dynamic controllers, xc and θr,c are the current end effector
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Fig. 2. Learning frequency and amplitude values of periodic flow over time,
converges after approximately 5 periods. Flow is modelled as elliptical waves
with components in the x and z directions
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Fig. 3. Learning flow velocity waveforms over time, converges after approx-
imately 5 periods. Only the flow components in the x and z directions are
shown

pose and current redundant configuration respectively, and β1

and β2 are positive gain constants. For the trajectory optimised
case, θr,d is found by linearly interpolating along the optimal
trajectory over time. This is compared in Section V-B to the
static case, where θr,d is fixed to a neutral setpoint. Note that
for the static case, only θr,d remains fixed, but θr,c will actively
change for end effector pose tracking when the vehicle pose
is perturbed by a disturbance.

V. RESULTS

A full dynamic model of the system is simulated in
Simulink, with a sliding mode controller for the vehicle [24],
and coupled manipulator/vehicle dynamics. An image of the
10 DOF system is shown in Figure 1. Each stage of the pro-
cesses required for implementation on hardware is validated
using the simulation.

A. Learning Parameters of Periodic Flow

Given reasonable prior estimation of the full vehicle dy-
namics from Section II-C, the periodic flow velocity can be



Fig. 4. Image sequence showing energy minimising trajectory for periodic
flow in the xz plane, and the motion of the Centre of Mass (COM) of the
vehicle

estimated online as per Section II-D. The periodic flow is
simulated as shallow water waves, contains only one frequency
component, and follows an elliptical path in the xz plane. The
periodic learning component assumes one frequency compo-
nent along each of the 6 (3 translation, 3 rotation) axes (K = 1
in Equation 9). Figure 2 shows the estimation of the frequency
and amplitude along the x and z directions over time. Figure 3
shows the estimated and true flow velocity over time. The
estimated flow velocity closely matches the actual velocity
after 3 periods. The amplitude estimation of the other 4 axes
remains at 0.

B. Energy Minimising Trajectory

Using the estimated flow velocity from above, an energy
minimising trajectory which maintains a fixed end effector
pose at a desired setpoint, can be calculated over one flow
period. The desired end effector pose setpoint is set to the
origin. We compare the trajectory optimised case to the case
of a static redundant configuration setpoint. Figure 4 shows an
image sequence of the UVMS along the trajectory, showing the
motion of the Centre of Mass (COM) of the vehicle, and the
flow velocity vd. The sequence shows the main result of this
work, that a ‘go with the flow’ trajectory can minimise energy
use, while keeping the end effector pose fixed. The top plot in
Figure 5 compares the results of the instantaneous power for
the static and trajectory optimised cases, as well as the average
power use over time. The total energy use for the static con-
figuration is around 2.5 times that for the optimised trajectory.
For the system considered in this work, this would lead to a
battery capacity of around 50 minutes vs 130 minutes. The
bottom plot of Figure 5 compares the end effector deviation
from the desired static pose. The translation and rotational
error for the static case are negligible. When following the
energy minimising trajectory, the translation error is around
3mm, and maximum rotation error is approximately 0.8◦.
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Fig. 5. (top) Comparison of the power use over time for the static and
trajectory optimised cases, as well as the total averaged power use, and
(bottom) comparison of end effector translational and rotational pose error
over the same time period

These values are negligible compared to errors in odometry
and flexible strain in the vehicle during operation.

C. Error Minimisation for Large Disturbances

For large disturbances, the system struggles to hold a static
configuration due to actuator saturation, resulting in large end
effector pose errors. Generating a trajectory which minimises
the L1.5 norm, also minimises large actuator outputs which
limits actuator saturation. The maximum normalised actuator
effort is shown in the top plot of Figure 6, with saturation
seen as a normalised effort of 1. The bottom plot of Figure 6,
shows the corresponding translation and rotation end effector
pose errors, which are significant around times of actuator
saturation. By generating an energy minimising trajectory,
actuator saturation is largely avoided throughout the optimised
trajectory, and hence end effector error is also minimised.

D. Sensitivity to Parameter Estimation Error

The previous results assumed perfect knowledge of the
hydrodynamic parameters in both the flow estimation and
energy minimising trajectory generation stages. In this section
we analyse the sensitivity of the proposed methods to errors
in hydrodynamic parameter estimation. Normally distributed
errors of varying relative standard deviation are added to each
of the linear drag, quadratic drag, and added mass terms to
determine the effects.

Figure 7 shows the results of learning the velocity wave-
forms with a 50% relative standard deviation error on the
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Fig. 6. (top) Comparison of the maximum normalised actuator effort over
time for the static and trajectory optimised cases, and (bottom) comparison
of end effector translation and rotation pose error over the same time period,
for a large flow disturbance

hydrodynamic parameters. The frequency learning converges
similarly to the case with no error, yet the amplitudes settle
with a steady-state error. Figure 8 shows the results of the
amplitude and frequency estimation errors over a range of
error magnitudes. The frequency errors remain negligible, yet
the amplitude errors grow to around 0.1ms−1 at 50% error,
and 0.24ms−1 at 100% error. Energy minimising trajectories
were calculated using the hydrodynamic parameter and cor-
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Fig. 7. Learning frequency and amplitude values of periodic flow over time,
with 50% relative standard deviation normally distributed errors added to the
linear and quadratic drag and added mass terms in the estimated dynamic
model
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responding waveform estimation errors. The average power
use over time for increasing errors is shown in Figure 9.
There is a minimal effect on the effectiveness of the pro-
posed energy minimising trajectory method, even at relatively
large estimation errors. Since the phase and frequency of the
waveform can still be accurately determined, the resulting
optimised trajectory still approximately follows the velocity
of the surrounding flow to a relative degree, suggesting the
method is robust to significant modelling errors.

VI. CONCLUSION

This paper describes methods for generating periodic tra-
jectories for an UVMS in periodic flows, which keep the end
effector pose fixed yet minimise the power required. Simulated
results show that periodic components of the flow can be
learned by driving an adaptive oscillator with the error in the
observed dynamics of the system. Further results show that
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tracking energy minimising trajectories lead to significantly
reduced power requirements, while keeping the end effector
pose relatively stable. Future work aims to look at learning
multiple frequency components simultaneously, and adapting
the trajectory in real-time. Further work aims for hardware
implementation in environments with both controllable and
uncontrollable flows.
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