Seminar: Suda Bharadwaj, University of Texas, 14 Jan, 2:00pm

When: Tues 14th of December, 2:00pm

Where: Rose St Building seminar area

Speaker: Suda Bharadwaj

Title: Assured Autonomy for Complex Systems

Abstract: Over the last decade, there has been an explosion in the use of autonomous systems and artificial intelligence in our daily lives. As human reliance on autonomy grows, so do the consequences of autonomous agents failing to achieve their mission. One area poised to make a fundamental impact is urban air mobility (UAM). UAM refers to on-demand air transportation services within an urban area. With projections indicating high-volume use of autonomous aircraft in urban air spaces, it is clear that advances in decision-making for autonomous systems with assured performance will play a key role in the advancement and acceptance of UAM. In this talk I explore the use of techniques from the field of formal methods in order to provide theoretical guarantees of performance and safety in multi-agent systems such as UAM. While formal methods provides powerful tools to formally specify and guarantee complex high- level requirements, it suffers from a lack of scalability restricting its applicability for systems with multiple agents. We explore the use of runtime enforcement or shielding in order to guarantee safety of complex systems at runtime without knowledge of the underlying systems’ design or goals. I will present our work in decentralizing the synthesis procedure in order to allow for use in systems with large numbers of agents and demonstrate its effectiveness with some UAM-based examples.

Bio: Suda Bharadwaj is currently a PhD student in the U-T-Autonomous systems lab at the University of Texas at Austin, supervised by Dr. Ufuk Topcu. His research interests involve assured autonomy using formal methods, reinforcement learning, and control. He completed his undergraduate studies at the University of Sydney with a BE/BSc double degree majoring in Aeronautical (Space) engineering and Physics. He received his MS in Aerospace Engineering at the University of Texas at Austin.


Sydney Institute for Robotics and Intelligent Systems